
4th year Project demo
presentation

Colm Ó hÉigeartaigh

CASE4 - 99387212

coheig-case4@computing.dcu.ie

4th year Project demo presentation – p. 1/23

Table of Contents
An Introduction to
Quantum Computing

The Quantum Computing
Language

The Bloch Sphere

The GUI

Parallelizing the QCL

4th year Project demo presentation – p. 2/23

An Introduction to
Quantum Computing

A qubit has two base states, denoted by the
Dirac notation, |0〉 and |1〉.

A qubit can be in a linear combination of
states, denoted by;

|φ〉 = α|0〉 + β|1〉(1)

The power of quantum computing largely
derives from two physical phenomena;
superposition and entanglement.

4th year Project demo presentation – p. 3/23

Superposition and
Entanglement

Superposition is the property of being able to
exist in multiple states at the same time.

Entanglement is a correlation between
qubits that is stronger than any possible
correlation in classical physics. An example
is one of the Bell states;

|φ〉 =
|00〉 + |11〉

√

(2)
(2)

Bell states are used as the basis for quantum
teleportation and super-dense coding.

4th year Project demo presentation – p. 4/23

Quantum Algorithms

The two most famous quantum algorithms
are Shor’s Algorithm and Grover’s Algorithm.

Shor’s algorithm can factor a large composite
number that is the product of two prime
numbers in polynomial time.

Grover’s algorithm can search an
unstructured database in quadratic time.

4th year Project demo presentation – p. 5/23

Quantum
Algorithms(2)

Discovering new algorithms is complicated
by the difficulty in getting the quantum state
to decohere to the wanted values.

It is also complicated by the fact that every
operation in Quantum Computing must be
reversible. This means any matrix used must
be Unitary. This is a major restriction on what
can be done.

4th year Project demo presentation – p. 6/23

The future of
Quantum Computing

It is unclear as yet how powerful the quantum
computing paradigm is. The fact that an NP
problem such as factoring can be solved in
exponential time is encouraging.

The complexity space of the quantum
computer is a subset of PSPACE, ie. those
problems bounded on memory, but
unbounded on time.

It is probable Quantum Computing will solve
a few more NP problems, and speed up the
solution to many more.

4th year Project demo presentation – p. 7/23

The Future(2)

A useful Quantum Computer has never been
built, due to the engineering difficulties
involved in preventing the quantum state
from decohering.

A Quantum Computer was built in 2001 at
IBM with 7 qubits, which demonstrated
Shor’s algorithm, factoring 15 into 5 and 3!

4th year Project demo presentation – p. 8/23

The Quantum
Computing Language

The QCL is a programming language
designed to approach quantum computing
programming using the syntax of a
procedural language like "C".

It provides a base set of operators, yet is
extremely powerful.

The QCL contains a number of classical
components such as if statements,
for/while/until loops, functions, etc.

4th year Project demo presentation – p. 9/23

The QCL(2)

Qubits are manipulated by declaring
quantum registers, qureg, with an arbitrary
number of qubits. An operator can be
applied to a quantum register.

QCL defines many operators for quantum
registers, among them; Rot(real theta, qureg
q) and Mix(qureg q).

4th year Project demo presentation – p. 10/23

The Bloch Sphere

A qubit is normally represented as a linear
combination of the basis states |0〉 and |1〉;

|φ〉 = α|0〉 + β|1〉(3)

This can also be represented as;

|φ〉 = cos
θ

2
|0〉 + eiϕsin

θ

2
|1〉(4)

The numbers θ and ϕ in equation (2) define a
point on the unit three-dimensional sphere.
This sphere is called the Bloch Sphere.

4th year Project demo presentation – p. 11/23

The Bloch Sphere(2)

4th year Project demo presentation – p. 12/23

The Bloch Sphere(3)

The Bloch Sphere provides a useful means
of visualizing the state of a single qubit.
However, there is no simple generalization of
the Bloch sphere known for multiple qubits.

A classical bit would be represented on the
bloch sphere as being either at the north
pole of the sphere or at the south pole.

A qubit however, can be a point anywhere on
the surface of the sphere.

4th year Project demo presentation – p. 13/23

The Bloch Sphere(4)

The latitude defines how close the qubit is to
the poles, depending on the probability
amplitudes.

The qubit exists on every point on the
longitude semicircle

To draw the bloch sphere, the GNU libplot
library is used. Libplot is a freely available
C/C++ function library for
device-independent 2-D vector graphics.

4th year Project demo presentation – p. 14/23

The Bloch Sphere(5)

The QCL uses GNU Bison and Flex to
provide a correct syntax for the language.

Bison is used in the QCL to ensure that
whatever is typed in at the command line is
syntactically correct in accordance with the
grammar of the QCL.

Flex is used to scan the input and to execute
the corresponding C++ code.

The semantics of the Bloch Sphere
command are handled deeper in the code.

4th year Project demo presentation – p. 15/23

The GUI
The server program is designed to run on a
Linux cluster and monitors the nodes
dynamically. It packages this information in a
class and broadcasts it to the client
programs, which display the information
graphically.

The server program extracts information
from the cluster by running and parsing
various Linux commands.

The client program displays the information
dynamically, by querying the server every
five seconds. 4th year Project demo presentation – p. 16/23

The GUI
The client uses the proxy pattern to contact
the server, and the observer pattern is used
on the server, to update the object the server
broadcasts whenever the state of the cluster
changes.

The client application is embedded inside an
application called WeirdX. WeirdX is a pure
Java X Window System Server.

It allows you to run a graphical application on
a server machine and then to redirect the
graphical output to another machine where it
is displayed using WeirdX. 4th year Project demo presentation – p. 17/23

Parallelizing the QCL-
Motivation

Simulating a quantum computer on a
classical computer is a computationally hard
problem.

As the qubits in the quantum register are
superposed with each other, the number of
basevectos increases exponentially.

Applying an operation to a quantum state is
simply a matrix-vector multiplication.

4th year Project demo presentation – p. 18/23

Parallelizing the
QCL(2)

The CA Linux cluster was used in this project
for parallel computation in the QCL.

The mpich implementation of the Message
Passing Interface(MPI) library is used in this
project.

The number of nodes to run the program
must be specified on the command line.

QCL is allowed to execute normally on the
head node, all other nodes are trapped
inside a loop awaiting instructions from the
head node.

4th year Project demo presentation – p. 19/23

Parallelizing the
QCL(3)

Data is sent to nodes from the head node
and gathered back in using different MPI
operations.

Various kinds of matrix-vector multiplication
algorithms are implemented in the QCL.

The Block-checkerboard partitioning
algorithm sees the matrix being divided up
into small squares of size (2x2). Each node
gets a block and a portion of the vector.

4th year Project demo presentation – p. 20/23

Parallelizing the
QCL(4)

The Self-Scheduling or Master-Slave
algorithm broadcasts the vector X to each
node, and the farms out one row at a time to
all the nodes. This is inefficient due to the
large amount of communication required.

The Block-striped partioning algorithm
stripes a matrix of size (n x n) row-wise
among p processes, so that each processor
stores n/p rows of the matrix.

The next approach is combine the
Compressed Sparse Row storage format
with the block-striped partioning approach.
Unitary matrices tend to have few non-zero
entries.

4th year Project demo presentation – p. 21/23

Parallelizing the
QCL(5)

An efficient way of storing spares matrices is
the CSR approach. Instead of a large
rectangular array, three arrays are used to
store the matrix. This greatly reduces
communication overhead.

The final approach uses block-checkerboard
partitioning again, but it is more advanced
than the first example, in that it only sends
the vector portions to the head nodes of
each column of the matrix, who then
redistribute it down the column.

4th year Project demo presentation – p. 22/23

Parallelizing the
QCL(6)

When all the results come back from the
nodes, they need to be recombined, and the
answer must be stored back in the original
quantum register.

4th year Project demo presentation – p. 23/23

	Table of Contents
	An Introduction to Quantum Computing
	Superposition and Entanglement
	Quantum Algorithms
	Quantum Algorithms(2)
	The future of Quantum Computing
	The Future(2)
	The Quantum Computing Language
	The QCL(2)
	The Bloch Sphere
	The Bloch Sphere(2)
	The Bloch Sphere(3)
	The Bloch Sphere(4)
	The Bloch Sphere(5)
	The GUI
	The GUI
	Parallelizing the QCL- Motivation
	Parallelizing the QCL(2)
	Parallelizing the QCL(3)
	Parallelizing the QCL(4)
	Parallelizing the QCL(5)
	Parallelizing the QCL(6)

